Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109207, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433925

RESUMO

Long noncoding RNAs (lncRNAs) play pivotal roles in modulating gene expression during development and disease. Despite their high expression in the central nervous system (CNS), understanding the precise physiological functions of CNS-associated lncRNAs has been challenging, largely due to the in vitro-centric nature of studies in this field. Here, utilizing mouse embryonic stem cell (ESC)-derived motor neurons (MNs), we identified an unexplored MN-specific lncRNA, Litchi (Long Intergenic RNAs in Chat Intron). By employing an "exon-only" deletion strategy in ESCs and a mouse model, we reveal that Litchi deletion profoundly impacts MN dendritic complexity, axonal growth, and altered action potential patterns. Mechanistically, voltage-gated channels and neurite growth-related genes exhibited heightened sensitivity to Litchi deletion. Our Litchi-knockout mouse model displayed compromised motor behaviors and reduced muscle strength, highlighting Litchi's critical role in motor function. This study unveils an underappreciated function of lncRNAs in orchestrating MN maturation and maintaining robust electrophysiological properties.

2.
Mol Ther Nucleic Acids ; 32: 144-160, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37064776

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by the selective loss of spinal motor neurons (MNs) and concomitant muscle weakness. Mutation of SMN1 is known to cause SMA, and restoring SMN protein levels via antisense oligonucleotide treatment is effective for ameliorating symptoms. However, this approach is hindered by exorbitant costs, invasive procedures, and poor treatment responses of some patients. Here, we seek to circumvent these hurdles by identifying reliable biomarkers that could predict treatment efficacy. We uncovered that MiR34 exhibits consistent downregulation during SMA progression in both human and rodent contexts. Importantly, Mir34 family-knockout mice display axon swelling and reduced neuromuscular junction (NMJ) endplates, recapitulating SMA pathology. Introducing MiR34a via scAAV9 improved the motor ability of SMNΔ7 mice, possibly by restoring NMJ endplate size. Finally, we observed a consistent decreasing trend in MiR34 family expression in the cerebrospinal fluid (CSF) of type I SMA patients during the loading phase of nusinersen treatment. Baseline CSF MiR34 levels before nusinersen injection proved predictive of patient motor skills 1 year later. Thus, we propose that MiR34 may serve as a biomarker of SMA since it is associated with the pathology and can help evaluate the therapeutic effects of nusinersen.

4.
Elife ; 72018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311912

RESUMO

The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes.


When a gene is active, its DNA sequence is 'transcribed' to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos.Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons.There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.


Assuntos
Linhagem da Célula , Loci Gênicos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Mitose , Neurônios Motores/citologia , Neurônios Motores/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Linhagem da Célula/genética , Núcleo Celular/metabolismo , Vértebras Cervicais/inervação , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Mitose/genética , Mutação/genética , Fenótipo , RNA Longo não Codificante/genética
5.
Nat Commun ; 8: 14685, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337978

RESUMO

The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.


Assuntos
Genes Homeobox , MicroRNAs/metabolismo , Medula Espinal/metabolismo , Transcrição Gênica , Animais , Simulação por Computador , Embrião de Mamíferos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neurônios Motores/metabolismo , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Medula Espinal/patologia , Fatores de Tempo
6.
Neurochem Res ; 40(4): 800-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25672822

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is caused by CAG/CAA repeat expansion on the gene encoding a general transcription factor, TATA-box-binding protein (TBP). The CAG repeat expansion leads to the reduced solubility of polyglutamine TBP and induces aggregate formation. The TBP aggregation, mostly present in the cell nuclei, is distinct from that in most other neurodegenerative diseases, in which the aggregation is formed in cytosol or extracellular compartments. Trehalose is a disaccharide issued by the Food and Drug Administration with a Generally Recognized As Safe status. Lines of evidence suggest trehalose could prevent protein aggregate formation in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. In this study, we evaluated the therapeutic potential of trehalose on SCA17 using cerebellar primary and organotypic culture systems and a mouse model. Our results showed that TBP nuclear aggregation was significantly decreased in both the primary and slice cultures. Trehalose (4 %) was further supplied in the drinking water of SCA17 transgenic mice. We found both the gait behavior in the footprint analysis and motor coordination in the rotarod task were significantly improved in the trehalose-treated SCA17 mice. The cerebellar weight was increased and the astrocyte gliosis was reduced in SCA17 mice after trehalose treatment. These data suggest that trehalose could be a potential nontoxic treatment for SCA17.


Assuntos
Marcha Atáxica/prevenção & controle , Gliose/prevenção & controle , Ataxias Espinocerebelares/fisiopatologia , Trealose/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Células de Purkinje/efeitos dos fármacos
7.
Drug Des Devel Ther ; 8: 1929-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25342886

RESUMO

In spinocerebellar ataxia type 17 (SCA17), the expansion of a translated CAG repeat in the TATA box binding protein (TBP) gene results in a long polyglutamine (polyQ) tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP) expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Chaperonas Moleculares/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Técnicas In Vitro , Indóis/síntese química , Indóis/química , Camundongos , Chaperonas Moleculares/biossíntese , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Técnicas de Cultura de Órgãos , Peptídeos/química , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...